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The ribosomally synthesized and posttranslationally modi-
fied peptides (RiPPs), also called ribosomal peptide natural
products (RPNPs), form a growing superfamily of natural prod-
ucts that are produced by many different organisms and partic-
ularly by bacteria. They are derived from precursor polypeptides
whose modification by various dedicated enzymes helps to
establish a vast array of chemical motifs. RiPPs have attracted
much interest as a source of potential therapeutic agents, and in
particular as alternatives to conventional antibiotics to address
the bacterial resistance crisis. However, their ecological roles in
nature are poorly understood and explored. The present review
describes major RiPP actors in competition within microbial
communities, the main ecological and physiological functions
currently evidenced for RiPPs, and the microbial ecosystems
that are the sites for these functions. We envision that the study
of RiPPs may lead to discoveries of new biological functions and
highlight that a better knowledge of how bacterial RiPPs
mediate inter-/intraspecies and interkingdom interactions will
hold promise for devising alternative strategies in antibiotic
development.

Microorganisms have a remarkable social life. They generally
live in complex polymicrobial communities and diverse envi-
ronments where interactions between individuals shape the
composition of populations and communities as well as their
functions (1-3). Microbial communities colonize niches at all
levels of the biosphere, from soils and oceans to living organ-
isms. Indeed, it is now firmly established that all organisms are
living in tight association with microorganisms, forming the
so-called holobionts that are found in all environments, marine
or terrestrial, and all organisms from plants to vertebrates,
including humans (4, 5). However, deciphering the mecha-
nisms and interplays between the molecules and macromole-
cules from the host and microorganisms that make up the holo-
biont is still in its infancy.

Social interactions are widespread in microorganisms and
play a major role in bacterial evolution and virulence. Either
they are antagonistic, leading to the elimination of competitors,
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or they are cooperative or synergistic, which permits bacteria
from obtaining benefits that could not be acquired by a single
individual (2). These interactions lead to various behaviors,
such as communication, toxin secretion, and acquisition of
nutrients or metals that are essential for growth and develop-
ment, such as iron for all bacteria (6, 7) or copper for metha-
notrophic bacteria (8). Adverse molecules, such as antimicro-
bials, have been considered for many years as weapons used by
bacteria to inhibit or kill competitors in a given niche. But more
recently, alternative hypotheses consider that antimicrobial
compounds would act also as signaling molecules able to coor-
dinate cooperative social interactions between bacteria (1, 9).
Moreover, the production of antimicrobials would be influ-
enced by social and competitive interactions between compet-
ing bacteria (10—13). Whereas the traditional model of bacte-
rial life is that of cells swimming in a liquid environment,
bacteria also commonly live in complex communities associ-
ated with various surfaces, either natural or human-engineered
ones, which are called biofilms (14). Biofilms result from the
coordinated action of several bacterial strains working together
to acquire benefits. They often occur as a response to ecological
competition from other strains and toxic stresses (15, 16). Anti-
microbial compounds and communication or signaling mole-
cules are involved in these processes through the so-called quo-
rum-sensing (QS)®> mechanism (16). Currently, the ecological
aspects of microbial research take particular importance both
in environmental domains and in the field of bacterial patho-
genesis (17), pointing to an acute need for understanding the
underlying mechanisms.

Bacteria can produce a broad range of metabolites that, among
other functions, can mediate bacterial interactions and display
antimicrobial activity. A large number of these natural products
(NPs) originate from large multifunctional enzymatic complexes,
nonribosomal peptide synthetases (NRPSs), polyketide synthases
(PKSs), or hybrid PKS/NRPS systems (18, 19). Another broad and
diverse class of natural products consists of the superfamily of
ribosomally derived molecules, the so-called ribosomally synthe-

3 The abbreviations used are: QS, quorum sensing; NP, natural product; NRPS,
nonribosomal peptide synthetase; PKS, polyketide synthase; RiPP, ribo-
somally synthesized and posttranslationally modified peptide; RPNP, ribo-
somal peptide natural product; TOMM, thiazole/oxazole-modified micro-
cin; AMP, antimicrobial peptide; BGC, biosynthetic gene cluster; LAP, linear
azol(in)e-containing peptide; SKF, sporulation killing factor; EcN, E. coli
Nissle 1917; Gl, gastrointestinal; MccE492, microcin E492; AIP, autoinduc-
ing peptide; TCS, two-component system; SHP, small hydrophobic pep-
tide; PQQ, pyrroloquinoline quinone.

SASBMB

© 2020 Li and Rebuffat. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.


https://orcid.org/0000-0002-3156-391X
https://orcid.org/0000-0002-5257-5039
mailto:yanyan.li@mnhn.fr
mailto:sylvie.rebuffat@mnhn.fr
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.REV119.006545&domain=pdf&date_stamp=2019-11-29
http://creativecommons.org/licenses/by/4.0/

Protease

General gene cluster

Protease

809'9 :

Leader

. Core

JBC REVIEWS: Microbial ribosomal peptide natural products

PCAT
(ABC transporter)

Modification enzymes

Precursor

o

_—
Modification
enzymes

Leader
Modified core

Precursor peptide

Ooogoép

Active unmodified peptide

removal/export

Voo

Active modified peptide
RiPP

Leader peptide l

Figure 1. General biosynthetic pathway leading to RiPP production, from the gene cluster to the mature active compound. The ribosomally synthe-
sized precursor can be only cleaved by a protease (green) and exported by an ABC transporter (brown) as an unmodified peptide. For RiPP biosynthesis, the core
peptideis fused to a leader peptide (gray) that contributes to the action of the posttranslational modification enzymes (blue). Cleavage of the leader and export
of the RiPP are both generally ensured by a peptidase-containing ATP-binding transporter (PCAT) that accomplishes the two functions.

sized and posttranslationally modified peptides (RiPPs) (20), also
termed ribosomal peptide natural products (RPNPs). Their bio-
synthesis starts with ribosomally synthesized linear peptides that
are subject to enzymatic modifications. The peptide precursor is
composed of a core peptide that is preceded by an N-terminal
leader region, often involved in recognition events (21). In rare
cases, the core peptide is followed by a C-terminal extension (i.e. a
follower peptide). The core peptide is decorated with posttransla-
tional modifications set up by dedicated enzymes (Fig. 1). The
posttranslational modifications involved in RiPP biosynthesis are
diverse, including for example dehydration, cyclodehydration,
cyclization, glycosylation, and phosphorylation, resulting in a vast
array of structures (20).

RiPPs are essentially produced by bacteria, but many eukary-
otic cells, such as fungi, plants, or marine organisms, are also
producers of such compounds (22). They are classified accord-
ing to their structural features that rely on the types of
posttranslational modifications. Among the most extensively
studied classes, we can cite lanthipeptides and lantibiotics, thio-
peptides, lasso peptides, cyanobactins, and thiazole/oxazole-
modified microcins (TOMMSs) (20). RiPPs are considered
promising molecules to be developed for applications in envi-
ronmental, medical, veterinary, and food industrial domains.
They constitute a fast-expanding area of research due to
increased genome-mining efforts and to the huge interest
raised by their structures, biological properties, biosynthesis
pathways, and posttranslational modification enzymes (for
reviews, see Refs. 20 and 23-29). Metagenome analyses of var-
ious holobionts offer great promise for discovering novel RiPPs.
The high abundance of RiPPs in the human microbiome has
been reported based on genome-mining, metabolomics, and
computational MS approaches (30-35). The development of
novel and efficient software tools will allow expansion of the
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repertoire of RiPPs from diverse microbiomes, including those
with unknown posttranslational modifications (36).

Despite the significant interest in RiPPs from an anthropo-
centric point of view, very little is known about the ecological
roles of RiPPs in nature. Given that peptides mediate many
biological processes across all domains of life, it is conceivable
that RiPPs would play diverse roles in the social behavior and
physiology of microorganisms. A number of RiPPs have been
shown in vivo and/or in vitro to be involved in competition,
communication, and various physiological functions such as
biofilm formation and morphological development. The scope
of this review will cover different classes of bacterial RiPPs and
summarize current knowledge of their natural functions, par-
ticularly in the context of interactions within microbial com-
munities and with their hosts.

RiPPs as actors of niche competitions

An overview of antibacterial RiPP families involved in
competition

One obvious function for RiPPs is related to that of antimi-
crobial peptides (AMPs), which act as chemical weapons for
defense and competition. Antibacterial RiPPs are posttransla-
tionally modified bacteriocins or microcins produced by
Gram-positive and Gram-negative bacteria (37, 38). Their
biosynthetic gene clusters (BGCs) share common features.
They encompass genes that encode at least one precur-
sor peptide, one or several posttranslational modification
enzymes, self-immunity proteins, and transporters that
ensure the export of the RiPP and can be involved in immu-
nity of the producer to the toxic RiPP in certain cases. The
archetypes for each family of antibacterial RiPPs are
described briefly below with regard to their structures (Fig.
2), biosynthesis pathways, and modes of action (Table 1).
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Figure 2. Representative structures of different classes of RiPPs cited in this review. Unmodified amino acids are circled. In the microcin J25 structure, the
residues forming the macrolactam linkage and entrapping the tail within the ring by steric hindrance are highlighted in green and red, respectively.
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The roles in niche competition played by a number of such
peptides have been evidenced. However for others, in partic-
ular the nucleotide peptide microcin C, there is not yet avail-
able information on their ecological roles in microbial com-
munities, although it can be envisioned that they should
fulfill similar functions.

Nucleotide peptides—The nucleotide peptide microcin C
(Fig. 2) is synthesized by several strains of Escherichia coli as a
leaderless precursor heptapeptide that has to undergo a two-
step maturation in both the producer and the target bacterium
for acquiring activity (for a review, see Ref. 39). First, posttrans-
lational modifications of the precursor happen in the producing
bacterium, leading to a formylated heptapeptide linked to a
nucleotide moiety, which remains inactive. Second, after export
outside of the producer, a double proteolytic cleavage occurs in
the susceptible bacteria, providing the toxic entity, which is a
nonhydrolyzable aspartyl-adenylate. This mimic of aspartyl
adenylate is an inhibitor of aspartyl-tRNA synthetase, which
therefore blocks protein synthesis at the translation step (40).

Siderophore peptides—Siderophore peptides are exemplified
by microcins E492, M, and H47 (41, 42) (Fig. 2) (Table 1). Mic-
rocin E492 (MccE492) was initially characterized in Klebsiella
pneumoniae RYC492 as an unmodified ribosomally synthe-
sized peptide with a potent antibacterial activity directed essen-
tially against Escherichia and Salmonella (43). This activity is
associated with a pore-forming property (44, 45) and with
interaction with the inner membrane components ManYZ of
the mannose permease complex involved in mannose uptake
(46). According to the growth conditions, this microcin is
biosynthesized as the initially characterized unmodified
form MccE492 (44) or as a posttranslationally modified form
(MccE492m) that carries a linear catechol-type siderophore at
the C terminus (47). The siderophore-microcin has a much
higher antibacterial activity than the unmodified counterpart,
which is reflected by an enlarged spectrum of activity, including
Klebsiella and Enterobacter species. Actually, it has been shown
that the unmodified microcin is an incompletely processed
form and that the final mature compound (i.e. the siderophore
microcin) is an RiPP (48). The MccE492/MccE492m biosyn-
thesis requires four enzymes (MceC, MceD, Mcel, and Mce])
that work with two precursors: the peptide precursor MceA
and enterobactin, a catechol siderophore, which itself results
from an NRPS pathway. Enterobactin is glucosylated and lin-
earized by a C-glucosyl transferase (MceC) and an enterobactin
esterase (MceD), successively, before an ester linkage is estab-
lished between glucosylated enterobactin and the C-terminal
serine of the peptide precursor. The resulting modified MceA is
then processed at the membrane, and the mature modified pep-
tide is exported after cleavage of the leader peptide (48, 49).

Lasso peptides—Lasso peptides are produced by Enterobac-
teriaceae (Proteobacteria), Actinobacteria, and a few Firmic-
utes. They are characterized by a [1]rotaxane knotted structure,
which has been named after the shape adopted by the lasso of a
cowboy (for reviews, see Refs. 50-54). The lasso topology is
composed of a macrocycle closed by an isopeptide bond linkage
from an Asp or Glu side chain to the N terminus of the core
peptide. The resulting C-terminal tail is threaded through the
ring and maintained in this entropically disfavored situation by
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bulky residues that firmly straddle the tail into the ring or, by
disulfide bonds, or by an association of both means. Microcin
J25 is the most intensively studied lasso peptide (Fig. 2 and
Table 1). It remained for more than 10 years the archetype of
this RiPP family. It is produced by E.coli AY25 (55) and
deserved attention over the years due to its potent narrow-
spectrum antibacterial activity, essentially directed against Sal-
monella and Escherichia. Its lasso structure was determined in
the 2000s (56 —59). Microcin J25 biosynthesis requires only four
genes assembled on a plasmid (mcjABCD). It was shown that
the lasso topology can be reconstituted in vitro from the pre-
cursor McjA in the presence of the two enzymes McjB and
McjC and ATP only (60). McjC and McjB act as a lasso cyclase
homologous to an asparagine synthetase and a leader peptidase,
respectively, which presumably form a complex (lasso synthe-
tase) (61). The mature lassoed microcin is then exported out-
side the producing cells by the ATP-binding cassette (ABC)
exporter McjD, which ensures secretion of the toxic peptide
into the environment. This both provides self-immunity to the
producer and allows it to compete with other bacteria in the
same niche thanks to the microcin (62, 63). Microcin J25 enters
susceptible bacteria by hijacking the outer-membrane sidero-
phore receptor FhuA/TonB-ExbB-ExbD— dependent pathway
and the inner-membrane SbmA transporter to cross the double
membrane of Gram-negative bacteria (for reviews, see Refs. 38
and 52) and subsequently inhibits gene transcription by inhib-
iting the RNA polymerase. Although many newly identified
lasso peptides do not show significant antibacterial activities
against tested strains, some of them are found to inhibit a range
of bacterial RNA polymerases (64-66), indicating that the
entry of the sensitive cells is the key determinant of the activity
of lasso peptides.

Circular bacteriocins—Circular bacteriocins are character-
ized by a head-to-tail cyclization, which is actually the only
posttranslational modification undergone by the ribosomal
precursor. The BGCs of circular bacteriocins encode a mem-
brane protein, which is hypothesized to ensure the N to C ter-
minus cyclization and possibly the protease activity. About 14
circular bacteriocins have been characterized to date (67),
among which is enterocin AS-48 (Fig. 2 and Table 1), the rep-
resentative of the group, which has been characterized in
Enterococcus faecalis strains from both food and clinical origins
(68). Circular bacteriocins share a common, highly compact
three-dimensional structural fold, which typically consists of an
arrangement of 4 -5 a-helices, packed into a helical bundle or a
saposin-like fold (67, 69). Circular bacteriocins have been pro-
posed to kill bacteria by interaction with the bacterial cell mem-
brane, causing its permeabilization and leading to leakage of
ions, dissipation of membrane potential, and cell death. The
dimerization process of enterocin AS-48 at physiological pH
was proposed to play a role in the mechanism of action. How-
ever, although it has been established for many circular bacte-
riocins that they did not require a receptor for antimicrobial
activity, the maltose ABC transporter complex has been shown
to be important for activity in the case of garvicin ML, leading to
the hypothesis of a dual concentration-dependent mode of
action, with membrane activity operating at higher concentra-
tions than perturbation of maltose transport (70).
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TOMMs-linear azol(in)e-containing peptides (LAPs)—LAPs
exhibit various combinations of thiazole and oxazole or methyl-
oxazole heterocycles. Although the term microcin is usually
restricted to AMPs produced by Gram-negative bacteria, LAPs
are also called thiazole/oxazole-modified microcins (TOMMs)
(71) even when they are produced by Gram-positive bacteria.
This nomenclature was adopted by homology to microcin B17
produced by E. coli (Fig. 2), the prototypic molecule endowed
with such modifications (72) and the first RiPP to have its bio-
synthesis reconstituted in vitro (73). The thiazole/oxazole rings
of microcin B17 are made from Cys and Ser/Thr residues by a
three-component B17 synthetase that catalyzes dehydration
and cyclization to form azolines, which are subsequently oxi-
dized to azoles (74). Peptides from the TOMM family include
several toxins from pathogenic bacteria (streptolysin S from
Streptococcus pyogenes and other Streptococcus species, list-
eriolysin S from Listeria monocytogenes (Table 1), clostridioly-
sin S from Clostridium botulinum and Clostridium sporogenes,
and stapholysin S from Staphylococcus aureus RF122, whose
structures all remain elusive) and other TOMMs from non-
pathogenic bacterial species (71, 74). Those have been shown to
exert different biological activities among which are antibacte-
rial properties (microcin B17 from E. coli, klebsazolicin from
Klebsiella pneumoniae, goadsporin from soil Streptomyces sp.
(Table 1), plantazolicin from the saprophyte Bacillus amylolig-
uefaciens FZB42 (75), or trifolitoxin and phazolicin from the
legume symbionts Rhizobium leguminosarum bv. trifolii T24
(76) and Rhizobium sp. Pop5, respectively (77)). It has been
firmly established that microcin B17 blocks DNA gyrase (74,
78) and that phazolicin and klebsazolicin inhibit the ribosome
(77), but the modes of action of other TOMM peptides remain
largely unknown.

Thiopeptides—Thiopeptides are macrocyclic peptides contain-
ing a characteristic six-membered nitrogen-containing ring, oxa-
zole/thiazol(in)e moieties, and/or dehydroamino acids (Fig. 2).
They are produced by and show potent activity against Gram-
positive pathogens, such as methicillin-resistant S. aureus and
Clostridium difficile (79). Their mode of action consists of inhibi-
tion of protein synthesis, interfering either with the 50S ribosomal
subunit (80) or the elongation factor Tu (81). Biosynthesis of the
oxazole/thiazole motifs is similar to that of TOMMs. The central
nitrogen-containing ring is synthesized by a dedicated enzyme cat-
alyzing a [4 + 2]-cycloaddition reaction. Thorough genome min-
ing studies have revealed that the human microbiome harbors
abundant thiopeptide BGCs (31) and that Actinobacteria or Bacilli
species are the dominant producers of thiopeptides (82), raising
the questions of their ecological roles in the related complex eco-
systems (e.g. soil environment and human microbiota).

Lanthipeptides and lantibiotics—Lanthipeptides, including
those that have antimicrobial properties, called lantibiotics, are
produced by and active against Gram-positive bacteria. They
are generally inactive against Enterobacteriaceae and other
Gram-negative bacteria. The major producers are lactic acid
bacteria (e.g. Lactococcus and Streptococcus) and certain Staph-
ylococcus strains. Lanthipeptides are characterized by the pres-
ence of the unusual residues lanthionine and 3-methyllanthio-
nine (for reviews, see Refs. 83—-86). These residues result from
dehydration of serine and threonine in the core peptide to give
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dehydroamino acids that cyclize with cysteines via the forma-
tion of thioether linkages between B-carbons. Nisin, produced
by Lactococcus lactis, is the first studied lantibiotic (Fig. 2 and
Table 1). It has been used as a food preservative (Nisaplin® and
Niprosin®) in more than 80 countries for over 50 years. Its
mechanism of action involves binding to and sequestration of
lipid II, the essential peptidoglycan precursor for cell wall bio-
synthesis. This interaction both blocks peptidoglycan biosyn-
thesis and causes the formation of lipid II-nisin heteromolecu-
lar pores in the membrane bilayer, leading to leakage of ions and
essential metabolites. Other lantibiotics called “two-peptide
lantibiotics” (or two-component lantibiotics) are produced as
two distinct peptide entities, which function in a synergistic
fashion to give optimal activity, whereas separately they are not
active or are weakly active (87). Each component of two-peptide
lantibiotics fulfills one of the two roles involved in the mecha-
nism of action of nisin (i.e. binding to lipid II and pore forma-
tion) (88). They are exemplified by lacticin 3147 (consisting of
peptides LtnA1/LtnA2) (Table 1) produced by L. lactis and
haloduracin (peptides Hala/HalB) from Bacillus halodurans,
the most studied of the group (52). The structure and mecha-
nism of action of lacticin 3147 have been completely deci-
phered, showing the specific role of each of the two peptide
components LtnAl and LtnA2 in the synergistic mechanism
(89,90). LtnA2 can form pores in membrane bilayers without
the help of LtnAl or lipid II. LtnAl cannot form pores in
membrane bilayers but has the ability to bind lipid II with its
C terminus. The synergistic mechanism of action of the two
lacticin 3147 components appears flexible, as lipid II binding
enhances the membrane activity, which, however, can hap-
pen, although to a lesser extent, independently of lipid II.

Sactipeptides and sactibiotics—Similar to lanthipeptides
and lantibiotics, the term sactipeptides includes the subclass
of antimicrobial sactibiotics (91, 92). They are characterized
by an intramolecular sulfur to a-carbon linkage between a
cysteine and another residue (Fig. 2) and, as such, are distin-
guished from lanthipeptides/lantibiotics (thioether linkages
between B-carbons) and from sactipeptide-like peptides that
contain sulfur to B- or y-carbon linkages (93). The sactio-
nine motif is established by a radical-based mechanism
ensured by a radical SAM enzyme called sactisynthase. Only
few sactipeptides have been characterized to date. They are
produced mainly by the Bacillus genus (subtilosin A from
B. subtilis 168, the first reported sactipeptide, the sporula-
tion-killing factor (SKF) from B. subtilis 168 (Fig. 2) (Table
1), thurincin H from Bacillus thuringiensis SF361, the two-
peptide thuricin CD from the human fecal isolate B. thur-
ingiensis DPC 6431, and huazacin or thuricin Z from B. thu-
ringiensis serovar Huazhongensis) (25, 32, 93, 94). They have
been found recently in Ruminococcus (ruminococcins from
Ruminococcus gnavus isolated from the human microbiota)
(32, 33) and presumably in Staphylococcus (hyicin from
Staphylococcus hyicus 4244). The structure of ruminococcin
C was recently established, showing that this sactipeptide is
stabilized by four thioether bonds that generate a double
hairpin fold (32, 33).
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RiPP-mediated competition mechanisms

Competition has long been recognized as a major regulatory
process in populations and community dynamics, which struc-
tures the ecological systems. It involves one organism decreas-
ing the survival, development, or reproduction of others. Com-
petition is categorized into two major modes identified in
ecosystems, including microbial communities either hosted in
holobionts or living in open environments: (i) exploitative com-
petition, which is an indirect process and occurs via resource
consumption when organisms compete for common nutrients
and one organism depletes its surroundings of nutrients, and
(ii) interference competition or direct competition, which hap-
pens when one individual directly attacks another, generally by
the secretion of harmful molecules (9, 95, 96). The battle for
iron is a typical example of exploitative competition (97),
whereas the production of antimicrobial molecules and toxins
(bacteriocins, microcins, and other NPs) exemplifies interfer-
ence competition. In some cases, interference competition can
be driven through an indirect action of a metabolite that trig-
gers at sublevel concentration the production of an antibiotic
molecule. This process, which involves a cross-talk between
antibiotic biosynthesis pathways, is exemplified by jadomycin
B, an angucyclin antibiotic produced by Streptomyces ven-
ezuaelae, which at subinhibitory concentration regulates the
production of prodigiosin (an NRPS-derived antibiotic) by
Streptomyces coelicolor and concomitantly its morphological
development (98).

It has been proposed that bacteria have evolved to detect and
respond to ecological competition by modifying regulatory net-
works and drive responses to defend them and counterattack.
This physiological response that detects harms caused by other
cells but not from abiotic stresses has been called competition
sensing (9). Engagement in interference and exploitative mech-
anisms of competition contributes to colonization resistance,
the process by which in healthy conditions and in the absence of
harmful molecules, microbiota can efficiently inhibit coloniza-
tion and overgrowth by invading nonindigenous microorgan-
isms, including pathogens (99, 100).

Among the different roles played (or supposed to be played)
by RiPPs in nature, their involvement in microbial competition
is the most documented one. The gut microbiota is probably
the most extensively studied and the better known natural
microbial ecosystem due to its extremely high importance for
human health (101). Indeed, perturbation of its equilibrium
(dysbiosis) is correlated to many diseases. Therefore, it has been
analyzed from both a strict microbiological and a biochemical
aspect to gain a better understanding of the interplay between
molecules from the microorganisms and the host. Moreover,
the therapeutic potential of the molecules secreted by the gut
microbiota has increased in the context of bacterial resistance
and its implications for human, animal, and environmental
health (102). Currently, other mammal-associated microbiota
are increasingly being studied, and among them, skin microbi-
ota is pretty well-documented (103, 104). In this context, it has
been evidenced both in vivo and in vitro that certain RiPPs are
actors in microbiota and particularly in the gut microbiota. To
describe these aspects, we selected several classes of RiPPs pro-
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duced by Gram-negative and Gram-positive bacteria, including
modified microcins and bacteriocins, which illustrate different
contexts in the field.

Interference competition driven by RPNPs in Gram-negative
bacteria—The siderophore peptides microcins M and H47 use
two complementary strategies to serve as efficient actors in col-
onization of the gut and competition. They are produced by
E. coli Nissle 1917 (also called Mutaflor and abbreviated as
EcN), a probiotic strain originally isolated in 1917 by the army
surgeon Alfred Nissle from the feces of a soldier who resisted a
severe outbreak of shigellosis during the First World War (105).
Today it is one of the most investigated bacterial strains, but
despite its commercialization and numerous applications, the
mechanisms underlining its positive properties to regulate
intestinal disorders of infectious or inflammatory origin remain
still obscure (106). Microcins M and H47 initially identified in
EcN (107) have been shown further to be siderophore peptides
(42). Although the potent bacterial inhibitory properties of
microcins in vitro were known for a long time (108), their action
and interplay with competitors in vivo remained elusive (109).
However, microcins M and H47 were recently demonstrated
for the first time to mediate competition among Enterobacte-
riaceae exclusively in the inflamed gut, which represents highly
competitive conditions for resources, and particularly for iron
(110). Indeed, in such conditions, EcN colonizes the inflamed
gut, where it uses its microcins for niche competition against
related Enterobacteriaceae, without modifying substantially
the gut microbiota. Furthermore, in these conditions, EcCN mic-
rocins impair the growth of enterobacterial pathogens, such as
Salmonella enterica subsp. enterica serovar Typhimurium or
adherent invasive E. coli. Moreover, in a recent study, evidence
that the posttranslational modification of EcN microcins with a
siderophore is required for antibacterial activity in vivo has
been obtained (111). This study also shows that the biosynthe-
sis pathway of siderophore microcins tightly depends on that of
the genotoxin colibactin (112), which is also produced by EcN
and is correlated with the frequency and severity of colorectal
cancer in humans (113), making the use of this commercialized
probiotic problematic.

Taken altogether, these studies show on one side that sidero-
phore microcins M and H47 efficiently act in microbial compe-
tition through both exploitative competition (i.e. in the present
case, competition for iron) and interference competition (con-
tact-dependent killing) (96) (Fig. 3A4), because they both trap
catechol siderophores to anchor them at the peptide C termi-
nus and hijack siderophore receptors for import. On the other
side, they highlight the versatility of the biosynthetic assembly
lines to produce both virulence factors and competition mole-
cules and the consequential fine margin between pathogenicity
and probiotic activity for a given strain.

Microcin J25 initially produced by a newborn infant fecal
isolate of E. coli AY25 has been known for about 25 years for
exerting a potent and narrow-spectrum antibacterial activity
directed essentially against Escherichia, Salmonella, and Shi-
gella at concentrations in the nanomolar to micromolar range
(55). The activity of microcin J25 in complex matrices and in
vivo in a mouse model of Salmonella infection was evidenced
(114). Competitive exclusion of Salmonella in poultry under
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field conditions has been applied since the 1990s in several
countries, using diverse preparations, including complex con-
sortia of bacterial strains (115). But it was not until recent years
that evidence of the involvement of microcin J25 in these prop-
erties was obtained. In that way, the ability of microcin J25 to
compete the pathogen Salmonella in the human or animal gut
conditions, as well as its stability in the different GI tract com-
partments, were examined using gut simulators. The degra-
dome of microcin J25 was examined in both dynamic (TIM1
dynamic simulator) and static models of digestion, using anti-
bacterial assays, LC-MS/MS, and molecular networking analy-
sis (116). The stability and activity are quite good in the stom-
ach acidic conditions, but the lassoed microcin partly degrades
in the compartment mimicking the duodenum conditions, in
particular upon the action of elastase, one of the main enzymes
in this GI compartment, showing that protection of the micro-
cin will be required for further applications. Our current work
indicates that microcin J25 has a potent antagonistic activity
against the pathogen Salmonella enterica subsp. enterica sero-
var Newport without strong perturbation of the microbiota
composition in an in vitro model of colon.* The efficacy of mic-
rocin J25 in the GI tract was also evaluated in vivo as a strategy
to control the negative effects of postweaning stress in pig hus-
bandry (117). Microcin J25 used as a feed additive was shown to
reduce inflammation, attenuate diarrhea, and improve growth
performance for weaned pigs, which are particularly suscepti-
ble to pathogen infections. Otherwise, the EcN strain was engi-
neered to express and secrete microcin J25 (strain E. coli
Nissle(J25)) (118). When administered to turkeys challenged
with pathogenic Salmonella, the engineered probiotic E. coli
Nissle(J25) significantly reduced the S. enterica Enteritidis
counts in turkey caeca compared with nonengineered EcN,
indicating that the lassoed microcin is responsible for this com-
petitive effect. Therefore, rigorous scientific bases obtained
thanks to the numerous studies on the structure, mechanisms
of antibacterial properties, and activity in gut (both in in vitro
models and in vivo) of microcin J25 testify to the role of the lasso
peptide as a competition molecule in the gut microbial commu-
nity (Fig. 3A4). These data also support the possibility of trans-
lation of the ecological properties of an RiPP to society via
potential applications to the animal feed industry.

Functional amyloids as reservoirs of toxic compounds and
modulators of antibacterial activity—Siderophore microcins
develop another strategy to exert their dominance in microbial
communities by using their ability to form or not form func-
tional amyloids (depending on the environmental conditions),
which serve as reservoirs of toxic compounds. Amyloid aggre-
gates have been studied initially as associated with misfolded
proteins involved in cytotoxicity and pathologies, including
prion diseases, diabetes type II, or Alzheimer’s and Parkinson’s
diseases (119, 120). However, in the last 2 decades, it has been
shown that amyloids have critical functions in all domains of
life and that their production can be beneficial for the organism
(121). Particularly in the bacterial world, the amyloid state rep-
resents a functional structure, which can ensure important

4S. Rebuffat and I. Fliss, unpublished results.
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functions in bacterial fitness and social behavior (122, 123).
Functional amyloids take part in virulence, cytotoxicity, adhe-
sion to surfaces, biofilm formation as well as protein/peptide
reservoirs, and their role continues to expand.

Posttranslational modification was shown to play a particular
role in both the formation and function of amyloids, which
ensures a subtle role in microbial competition. Indeed, micro-
cin E492 (MccE492) has the capacity to form amyloid fibrils in
vitro and in vivo in the extracellular space, and this property was
correlated with a loss of antibacterial activity of the peptide
(124, 125). Similar to the extracellular toxin inactivation pro-
cess, intracellular amyloid accumulation does not have a toxic
effect (126). Indeed, amyloid fiber nucleation by the MccE492m
modified form of the microcin appears less efficient than by the
unmodified peptide, although both forms can be incorporated
into preformed fibers (125). It was shown that in vitro amyloid
formation by MccE492 is a dynamic and reversible process and
that amyloids could represent a reservoir of toxic molecules
(127, 128). Although such a process has not been shown in vivo,
it can be envisaged that the toxic or antibacterial compounds
would be stocked when the concentration reaches a high level
and released when required upon modification of the environ-
mental conditions (Fig. 34). Furthermore, bacteria generally
use dedicated immunity proteins or ABC transporters encoded
in the bacteriocin gene cluster to inactivate or expel the toxin
they produce and make them resistant. Thus, amyloidogenesis
would be a strategy used by bacteria to modulate the release of
potent weapons against niche-occupying competitors and
simultaneously contribute to self-immunity.

Interference competition driven by RPNPs in Gram-positive
bacteria—Enterococci are Gram-positive bacteria belonging to
the commensal gut microbiota, but they are also opportunistic
pathogens that can be responsible for significant diseases in
immune-compromised people. An E. faecalis strain, OG1RF,
harboring the sex pheromone—-responsive conjugative plasmid
pPD1 (129) has been shown to replace indigenous enterococci
and outcompete E. faecalis strains lacking the pPD1 plasmid in
a model of colonization of the mouse gut with E. faecalis (130,
131). This model allowed the establishment of long-term colo-
nization of the gut by a marked strain without the need for
antibiotics by delivering the strain in drinking water, therefore
modeling commensal colonization. The plasmid pPD1 encodes
bacteriocin 21 (Bac-21), which is actually identical (129) to the
well-characterized 70-amino acid circular bacteriocin AS-48.
In this mammalian GI tract model, Bac-21 was shown to pro-
vide colonization advantage in the highly competitive environ-
ment of the gut to outcompete indigenous enterococci and
drive the competition between closely related bacterial species.
Moreover, pPD1 is actively transferred to other E.faecalis
strains by conjugation in the GI tract, showing that this strategy
can be used to enhance the number of Bac-21 producers in the
niche and eliminate more efficiently and rapidly the susceptible
population. Thus, the circular bacteriocin Bac-21/enterocin
AS-48 serves as a killing factor that facilitates competition
between the E. faecalis producer and other enterococci that are
not able to synthesize this RiPP (Fig. 3B). Therefore, the pro-
duction of circular bacteriocin by commensal bacteria, such as
E. faecalis, drives niche competition in the GI tract by the inter-
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ference competition strategy boosted by a conjugation transfer
strategy of the encoding plasmid to enhance the level of pro-
duction of the killer molecule.

Thuricin CD is a two-component sactibiotic produced by
B. thuringiensis DPC 6431 isolated from a human fecal isolate
(132) (Table 1). The two distinct 30-amino acid sactipeptides,
Trn-aand Trn-B, forming thuricin CD act synergistically (opti-
mal 1:2 ratio) to kill the pathogens Clostridium difficile, the
causative agent of hospital-acquired infections, and L. monocy-
togenes at nanomolar concentrations. But they have a moderate
impact on most other genera, indicating a very restricted spec-
trum of activity. In an in vitro distal colon model, thuricin CD
killed highly efficiently a wide range of clinical C. difficile iso-
lates while having a low impact on other genera and in partic-
ular on gastrointestinal commensal strains, such as Lactobacil-
lus casei and Bacillus lactis, known to contribute to microbiota
health. Thuricin CD is thus significantly stable in the gut con-
ditions, where it can selectively outcompete a pathogen by
interference competition (Fig. 3B) without perturbing the com-
mensal microbiota.

Recently, ruminococcin C purified from caecal contents of
rats associated with the human symbiont R. gnavus E1 has been
shown to kill pathogenic Clostridia and Gram-positive multi-
drug-resistant bacteria without showing toxicity to eukaryotic
cells (33). It was proposed to inhibit nucleic acid synthesis in a
way similar to that of the commercial antibiotic metronidazole.
Moreover, ruminococcin C maturation from the inactive pre-
cursor into its active form was shown to involve two successive
steps. The first one occurs in the R. gnavus producer thanks to a
specific zinc-metallopeptidase, whereas the second one is
ensured by the human pancreatic trypsin (Fig. 3B). This is the
first description in RiPPs of a two-step maturation process
involving enzymes from both the symbiont and the host, which
affords an example of the tight cooperation between host and
associated bacteria for the production of a competition mole-
cule identified as a RiPP.

By contrast, the broad-spectrum two-peptide lantibiotic lac-
ticin 3147 produced by the WT strain L. lactis DPC 3147, which
requires the synergistic action of its two components LtnA1l
and LtnA2 (Table), inhibits beneficial commensal Gram-posi-
tive bacteria as well as the pathogen C. difficile in an anaerobic
fecal-based fermentation protocol (133). Moreover, it is not sta-
ble, both in vivo in pig and in vitro and ex vivo in conditions
simulating the mammalian GI tract (134). Degradation of the
two peptide components LtnAl and LtnA2 and concomitant
significant loss of antibacterial activity were shown to be mainly
due to the a-chymotrypsin activity in in vitro experiments, with
the LtnA1l peptide being more susceptible to digestion than
LtnA2. This two-peptide lantibiotic, while having a good activ-
ity against C. difficile in vitro, thus appears to be a poor com-
petitor in the intestinal context. This series of examples points
to the necessity of examining the antibacterial properties of a
given RiPP in its ecological context.

If the gut microbiota is the most largely studied ecological
niche in terms of bacterial competition or communication
mediated by diverse natural compounds, the skin microbiota is
also the site for such complex interactions. The ability of two
lantibiotics produced by Staphylococcus hominis A9 to com-
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pete S. aureus, a pathogen closely related to the commensal
producer, has been evidenced in the context of atopic dermati-
tis, where the commensal bacterial community is deficient
(135). This led to the isolation and characterization of two lan-
tibiotics termed Sk-lantibiotic-a and Sk-lantibiotic-3 (Table 1)
that were shown to participate in the host defense. Further-
more, they potentiate LL-37, a human AMP of the cathelicidin
family, which protects the skin from infections by invasive bac-
teria (136). Thus, it is shown that a synergy between a commen-
sal bacterial RiPP and a host AMP leads to an improved protec-
tion of the host (Fig. 3B). Moreover, a second competition
strategy was identified in S. hominis. A small peptide was iso-
lated and identified as a branched-cyclic nonapeptide (Fig. 2)
close to other Staphylococcus autoinducing peptides (AIPs)
involved in the QS mechanism (137) (also see “Functions in
communication and QS”). It was shown to inhibit the S. aureus
system regulating the secretion of a virulence factor (phenol-
soluble modulin @ (PSMa)) that promotes inflammation in
mice hosts (Fig. 3B). Therefore, a complex array of interactions
using RiPPs as communication and competition molecules is
established between commensals and pathogens. It includes
synergistic effects between RiPPs and AMPs and the produc-
tion of an AIP by commensals (Fig. 3B). This highlights the
importance of a complex and well-balanced chemical dialog in
maintaining a healthy symbiosis system.

Another example of competition in the skin microbiota is
illustrated by the interaction between Propionibacterium acnes
and Staphylococcus epidermidis. A group of P. acnes strains iso-
lated from both healthy and acne-affected skin exhibited higher
antibacterial activity toward S. epidermidis. Comparative ge-
nomics showed that they differ in other groups of P.acnes
strains by harboring a genomic island encoding a thiopeptide
BGC, which is likely to be responsible for the anti-S. epidermi-
dis activity. This study highlights a likely role of mediating
interspecies interactions in the microbiota played by thiopep-
tides (138). In further support of this assumption, thiopeptide
BGCs have been identified as the dominant RiPP clusters in
genomes and metagenomes of the human microbiota (31, 35).
A thiopeptide lactocillin has been identified from a vaginal iso-
late of Lactobacillus gasseri (Fig. 2 and Table 1). It shows activ-
ity to Gram-positive pathogens, including S. aureus, E. faecalis,
Gardnerella vaginalis, and Corynebacterium aurimucosum,
implicating its role in protecting the vaginal microbiota against
invading pathogens. Remarkably, it has no activities against
vaginal commensal bacteria, which was hypothesized to be
related to an evolved resistance by the related microbiota to a
compound produced by their community (31).

Listeriolysin S is the first bacteriocin to be reported from the
Gram-positive genus Listeria (139) (Table 1). It belongs to the
TOMM family of RiPPs that contain thiazole and oxazole rings
as posttranslational modifications. Contrary to most microcins
and bacteriocins that act as competitors due to their antimicro-
bial properties, listeriolysin S is a virulence factor produced by
epidemic strains of the food-borne pathogen Listeria, L. mono-
cytogenes F2365, responsible for listeriosis outbreaks. Indeed,
with the cytotoxin streptolysin S from S. pyogenes, listeriolysin
S belongs to a class of TOMM virulence peptides from patho-
gens (71). Listeriolysin S has been shown to manipulate the host
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microbiota, targeting selectively direct competitors, L. lactis,
S. aureus, and L. monocytogenes, lacking the listeriolysin S
operon (which confers self-immunity), to provide a more favor-
able niche for the pathogenic Listeria strains in a mouse oral
infection model (140). Moreover, listeriolysin S does not con-
tribute to injuries caused to host tissues by L. monocytogenes
infection or to virulence in host organs, but it is specifically
produced in the gastrointestinal tract and targets exclusively
bacteria in the gut, leading to altered gut microbiota (140, 141).
The listeriolysin S TOMM can thus act as a virulence factor that
only and selectively targets bacterial cells in vivo without detri-
mental effects on the host cells (Fig. 3B). Importantly, the
dehydratase/dehydrogenase LlsB, which is encoded in the
TOMM operon and is putatively involved in establishment of
the lysteriolysin S posttranslational modification, was shown to
be required for the mice gut colonization, whereas lysteriolysin
S itself is not. LIsB thus plays an additional role for virulence,
which is hypothesized as participating in the posttranslational
modification of another molecule. This shows here again the
subtle and essential roles played by posttranslational modifica-
tions in the competition strategies of bacteria.

Functions in communication and QS

Microorganisms are now widely appreciated for their ability
to communicate and coordinate social traits. To do so, they
employ a QS strategy, which involves the production, diffusion,
and perception of an extracellular signaling molecule that reg-
ulates subsequently gene expression at the community level
(142). QS allows the microorganisms to alter behavior collec-
tively in response to changes in the biotic or abiotic environ-
ment, thus granting them an adaptive advantage (143). Autoin-
duction of the production of signaling molecules is a hallmark
of QS. In contrast to Gram-negative bacteria that use frequently
small molecules, such as homoserine lactones, as autoinducers,
Gram-positive bacteria employ commonly ribosomal peptide—
mediated QS mechanisms (144, 145). For the focus of this
review, we only include examples of QS-related peptides with
post-translational modifications, although many of them are
linear, resulting from the peptidase cleavage from a precursor.
The involvement of RiPPs in QS can be categorized into three
types. (i) the RiPP itselfis a QS signaling molecule, termed pep-
tide pheromone, and the process regulates other physiological
aspects; (ii) the RiPP is an AIP, but it only controls its own
production; and (iii) the RiPP biosynthesis is tightly regulated
by QS that relies on other signals.

RiPPs as QS signals

The most prominent example is the AIPs, derived from the
agrABCD system, which controls the production of virulence
factors and biofilm formation in several pathogens, including
S. aureus, L. monocytogenes, and Clostridium species (146—
150) (Table 1). These are short peptides (7—12 amino acids)
with a C-terminal five-member thiolactone ring (Fig. 2). Except
for the conserved Cys required for thiolactone formation,
amino acid composition in AIPs is highly variable, with a high
frequency of hydrophobic residues (151, 152). AIP maturation
and regulation have been extensively studied in S. aureus. AIP is
made from the precursor AgrD by a membrane-bound endo-
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peptidase AgrB. Matured in and released to the extracellular
environment, AIP binds to the sensor histidine kinase AgrC.
This induces signal transduction via phospho-relay to the
response regulator, AgrA, which in turn activates the expres-
sion of the agrABCD operon and an effector RNA gene that
elicits QS responses. AgrC and AgrA form a canonical two-
component system (TCS), as frequently seen in peptide-related
QS mechanisms. AIPs activate their cognate AgrC receptor and
can modulate the activity of AgrC receptors from other related
species (152, 153). Thus, it can be envisioned that AIP-medi-
ated interspecies cross-talks play a role in maintaining homeo-
stasis of related microbiota in a complex environment. Indeed,
as mentioned above, it has been evidenced that commensal,
non-S. aureus staphylococcal strains in the human skin micro-
biota can block the agr QS system of S. aureus by secreting
different AIPs, hence preventing its damage to the skin (137,
154). Such a phenomenon has implications for the develop-
ment of therapeutic strategies using AIP variants (153, 155,
156). Similarly, E.faecalis harbors a cyclic peptide-based
fsrABCD QS system that regulates virulence. It differs from the
agr system in the autoinducer, termed gelatinase biosynthesis-
activating pheromone, that contains a 9-residue lactone ring at
the C terminus.

ComX pheromones derived from the comQXPA system of
B. subtilis regulate genetic competence, surfactin production,
and biofilm formation (Table 1). They are short peptides (4—13
amino acids) with a conserved, modified Trp residue that is
formed upon isoprenylation and cyclization (157, 158) (Fig. 2).
Regulation by ComX via a dedicated TCS (ComP/A) parallels
that of the agr system. Great variation in terms of amino acid
sequence and the nature of the isoprenyl modification on
ComX has been observed among Bacillus strains, both contrib-
uting to their activation specificity of the TCS (159-161).
Although some QS interferences were detected among Bacillus
strains isolated from the same location, the lack of consistency
in the interference pattern suggested that ComX diversification
is driven by gain-of-function, such as genetic competence upon
TCS activation, instead of competition advantages (159). This
is in contrast with AIPs in staphylococcal species.

RiPP autoinducer that only autoregulates its own biosynthesis

This phenomenon is frequently observed for lantibiotic pro-
duction, including nisin, subtilin, mersacidin (162, 163), cytol-
ysin (164), microbisporicin (165, 166), and planosporicin (167),
although the regulation mechanisms differ. In this case, a trig-
ger signal is required to initiate the RiPP production. Autoin-
duction of cytolysin, a two-peptide lantibiotic and a virulence
factor associated with hemolysis of E. faecalis, is remarkably
triggered by the presence of eukaryotic cells (168, 169). As for
microbisporicin and planosporicin produced by Actinobacte-
ria, their initial autoinduction is induced by nutrient limitation.
It is suggested that this would allow the coordination of antibi-
otic production across all mycelium cells to achieve an ecolog-
ically effective concentration (166). However, the advantages of
autoinduction of antibacterial peptides in niche competition
remain to be firmly demonstrated.
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RiPPs regulated by QS

QS-controlled production of RiPPs, in particular modified
bacteriocins, has been observed and intensively studied in
streptococci. Placing antibacterial synthesis under QS regula-
tion would allow these bacteria to fine-adjust interaction with
the host and other species according to environmental and
cell population conditions. For example, the human pathogen
Streptococcus pneumoniae produces a lantibiotic as a QS
response triggered by the presence of galactose via an internal-
ized pheromone-based QS system (170) (Table 1). As galactose
is a major sugar of the human nasopharynx, lantibiotic produc-
tion at high cell density thus would be a strategy to gain com-
petition advantages for S. pneumoniae during colonization of
this niche. Moreover, as seen in S. pneumoniae and Streptococ-
cus mutans, bacteriocin production is tightly regulated by the
QS system involved in the regulation of competence (171, 172).
This would provide new DNA materials from the lysis of com-
petitors to be taken up by the pathogen and to stimulate biofilm
formation, which has been demonstrated to confer an adaptive
advantage in S. pneumoniae when grown on the mucosal sur-
face (173). This phenomenon has also been shown to have a
huge impact on the outcome of mixed-species biofilms, using
dual-biofilm formed by S. mutans and Candida albicans as a
model (174).

As another example, Streptococcus thermophilus produces a
short cyclic peptide, named streptide, having a C-C linkage
between a Lys and a Trp residue (Fig. 2 and Table 1). The cycli-
zation is introduced on the precursor peptide by a radical SAM
enzyme. Streptide biosynthesis is under the control of a QS
system involving a small hydrophobic peptide (SHP) as signal-
ing molecule and a transcriptional regulator (i.e. SHP/Rgg sys-
tem) (175-177). Genome-mining efforts identified a large
panel of streptide-like biosynthetic systems in streptococci, all
likely within the context of QS control (178). Biochemical char-
acterization of these radical SAM enzymes led to the discovery
of novel cyclization motifs such as B-thioether and a-ether
linkages (179, 180). Such unprecedented chemical diversity
would reflect functional divergence. However, the roles of
streptide-like molecules remain elusive.

Host-bacteria interaction

Few studies exist in probing the roles of microbial RiPPs in
host-bacteria interaction. Recently, it was discovered that the
plant pathogen Xanthomonas oryzae pv. oryzae utilizes a tyro-
sine-sulfonated small peptide (RaxX) as a mimic of plant pep-
tide hormones to activate the immune receptor XA21 in rice,
triggering immune responses (Table 1). RaxX thus functions as
an immunogen and has a role in the virulence (181). Although
RaxX resembles phosphorylated peptides that are commonly
involved in the regulation of various biological processes, the
mode of biosynthesis of RaxX that requires pathway-encoded
modification enzymes and a precursor peptide parallels the
canonical RiPP pathways. RaxX apparently belongs to a large
family of bacterial and plant RiPPs with a sulfated tyrosine,
suggesting that such plant-bacteria interaction is prevalent in
nature. Interestingly, sulfonation can potentially occur on other
RiPPs, such as lasso peptides, as their BGCs from proteobacte-
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ria frequently encode sulfotransferases (182). Sulfonated mole-
cules are rather unusual in prokaryotes; however, known exam-
ples are frequently involved in the communication between
eukaryotic hosts and bacterial symbionts or pathogens. Those
include the factor Nod from the nitrogen-fixing rhizobium
Sinorhizobium meliloti (183) and sulfolipid-1 from Mycobacte-
rium tuberculosis (184). It thus remains a promising direction
to study sulfonated RiPPs in host-bacteria interaction. In addi-
tion, there are several remarkable RiPPs isolated from animal
symbionts, such as polytheonamides produced by a sponge
symbiont (185, 186) and cyanobactins by the Prochloron cyano-
bacteria symbionts of tunicates (187). It would be very interest-
ing to decipher whether these peptides play a role in the
symbiosis.

Effects on microbial physiology
Biofilm formation and morphological development

Being unicellular organisms, many bacteria have evolved to
adopt multicellular lifestyles, manifested by, for example, the
formation of biofilms, fruiting bodies, or morphological differ-
entiation (188). It is now largely appreciated that some natural
antibiotics function as signaling molecules at subinhibitory
concentrations in these processes, playing a role in modulating
the physiology of the producing bacteria or the interacting ones
(189, 190). Consistent with this view, a thiopeptide produced by
Bacillus cereus, thiocillin, was identified to stimulate biofilm
formation in B. subtilis using a coculture approach (Table 1).
Other Bacillus strains with thiopeptide BGCs in the genome
produced the same effect (191, 192). Similarly, another thio-
peptide, thiostrepton, was found to stimulate the biofilm for-
mation in Pseudomonas aeruginosa at a concentration that
does not inhibit the pathogen’s growth (193) (Table 1).
Although the molecular mechanisms underlying the biofilm
induction effect remain unknown, these studies highlight a role
of thiopeptides in modulating bacterial physiology. Given the
dominant prevalence of thiopeptide BGCs in metagenomes of
the human microbiota, future studies should focus on the func-
tion of these molecules in microbial competition and interac-
tion (31, 35).

The Streptomyces genus is extensively studied for its extraor-
dinary specialized metabolism. This is intimately linked to its
complex life cycle encompassing vegetative mycelia, aerial
hyphae, and spores. Some RiPPs are identified to mediate the
morphological development in Streptomyces. The lanthipep-
tides SapB and SapT from S. coelicolor and Streptomyces ten-
dae, respectively, are required for the emergence of aerial
hyphae from vegetative cells (194, 195) (Table 1). They function
as surfactants by reducing the surface tension for aerial growth
(196). This developmental stage can be interfered with by the
surfactants produced by other bacteria, adding a new strategy
of interspecies interaction. It has been shown that the lipopep-
tide surfactin produced by B. subtilis inhibits Streptomyces aer-
ial development, whereas it is required for its own aerial struc-
ture formation toward spore genesis (197, 198). Furthermore,
the TOMM peptide goadsporin produced by Streptomyces sp.
induces spore formation and/or pigment production in other
Streptomyces species (199) (Table 1). Hence, goadsporin has
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been used as an elicitor at subinhibitory concentration for trig-
gering specialized metabolite production in Streptomyces. Sim-
ilarly, thiostrepton produced by Streptomyces laurentii was
identified to stimulate pellet formation accompanied by a
decrease in pigment synthesis in S. coelicolor (200).

Cannibalism

Microbial antimicrobial peptides are commonly considered
as part of the chemical weapons for the microorganisms to
eliminate competitors from other species. On the other side,
they can be used against a distinct subpopulation of the same
species, in analogy to cannibalism, for the benefit of the whole
community. In filamentous fungi, this function is hypothesized
to be fulfilled by Cys-rich antifungal peptides (201). In B. subti-
lis, under nutrient limitation conditions, cells produce a disul-
fide-containing sactipeptide, termed sporulation killing factor
(SKF) (202) (Fig. 2 and Table 1), and a sporulation-delaying
protein to lyse nonsporulation sibling cells (203). This allows
the release of nutrients to sustain the growth of sporulating
cells, hence delaying the time- and energy-consuming process
of sporulation. The ecological significance of such cannibalism
in B. subtilis would be to avoid the growth disadvantage when
the nutrients become available again. It is more difficult to
resume growth from spores compared with vegetative cells
(204). Moreover, the cannibalism has been shown to stimulate
biofilm formation via the increased extracellular matrix pro-
duction in B. subtilis, and both processes were triggered by the
NRPS-derived lipopeptide surfactin (205). Interestingly, syn-
thesis of an extracellular matrix and sporulation have been
recently shown to be implicated in the interaction of B. subtilis
and Pseudomonas chlororaphis that modulates plant co-coloni-
zation (206). This highlights that peptide-mediated cannibal-
ism in sporulating bacteria is not only a mechanism of intras-
pecies interaction, but also should have a wider implication in
interspecies interactions.

Metal acquisition

Acquisition of nutrients such as transition metals from the
environment is an essential trait for bacteria to survive. Iron
acquisition via siderophores is a well-studied phenomenon that
involves uniquely nonribosomal peptide products. Remarkably,
some methanotrophic bacteria secrete methanobactin RiPPs as
chalkophores (i.e. compounds with high binding affinity for
copper) to acquire copper from the environment (207) (Fig. 2
and Table 1). The majority of these bacteria utilize a copper-de-
pendent, membrane-bound particulate, methane monooxyge-
nase, which catalyzes the first step of methane metabolization
to form methanol. An elaborate copper acquisition system thus
helps to meet the high needs of copper in methanotrophs (208).
Methanobactins were first discovered in cultures of Methylosi-
nus trichosporium OB3b under copper starvation conditions
and later from several other methanotrophic species (8, 207).
They bind copper ions with high affinity (K,at 10" >' to 10~ "M
for Cu™ and 10~ "*to 10~ " for Cu**). Copper chelation occurs
via two bidentate ligands, each composed of a nitrogen-con-
taining heterocycle, such as oxazolone with an adjacent thio-
amide group (Fig. 2). Structural variations in amino acid com-
position were found to influence the copper affinity (209). The
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copper-methanobactin complex is transported into the cell by
an active transport process, involving a TonB-dependent trans-
porter encoded in the pathway and a periplasmic binding pro-
tein (210, 211), although the function of the latter in transport is
not clearly known. Such an import mechanism is consistent
with that of other metallophores (212). It has been shown that
the transporter displays relaxed substrate promiscuity (210),
suggesting a possible pirating of methanobactins from other
species. These features have important implications in the ecol-
ogy of methanotrophs in nature. Interestingly, methanobactin-
like BGCs have been identified in the genomes of many non-
methanotrophic bacteria (213). It remains to be seen whether
the derived peptides have a similar function for the producers
as known methanobactins. Interestingly, some RiPP BGCs,
such as certain lasso peptide pathways in proteobacteria,
encode dedicated TonB-dependent receptors (214, 215), sug-
gesting a possible role in transporting cargo molecules, in
analogy to metallophores. This direction deserves further
investigations.

Enzyme cofactors

Pyrroloquinoline quinone (PQQ) and mycofactocin are two
examples of RiPPs functioning as enzyme cofactors (Table 1).
They share parallel biosynthesis: both are derived from the
cross-linking of a T'yr and another residue (Glu in PQQ and Val
in mycofactocin) in the precursor, followed by peptide cleavage
and further modifications on the aromatic ring (for a review on
biosynthesis, see Refs. 216 and 217) (Fig. 2). However, the struc-
ture of mycofactocin is not yet completely elucidated. PQQ is
produced mainly by Gram-negative bacteria (218). It serves as a
redox cofactor of dehydrogenases, including alcohol and glu-
cose dehydrogenases (219, 220), which allows the producer to
use these substances as carbon sources. It is conceivable that
this confers on PQQ-producing bacteria a competitive growth
advantage in certain environments. As for mycofactocin, its
BGC is present in many Actinobacteria and particularly in
Mycobacterium species. Bioinformatic analysis revealed an
association of mycofactocin BGCs with the presence of genes
encoding nicotinoproteins (i.e. enzymes with bound NAD(P) as
cofactor) (221), such as short-chain, iron-dependent, and zinc-
dependent dehydrogenases (222). This indicates that these pro-
teins may utilize mycofactocin as a redox cofactor. Recent
experimental data indeed showed that the mycofactocin path-
way is essential for primary alcohol metabolism in Mycobacte-
ria (223). Precisely, it was demonstrated that the methanol de-
hydrogenase in Mycobacterium smegmatis uses mycofactocin
as an in vivo electron acceptor (224). Very recently, the biosyn-
thesis, structure, and redox potential have been thoroughly
characterized for premycofactocin (225) (Fig. 2). This study has
demonstrated for the first time that premycofactocin is a bio-
logically active redox cofactor used by M. smegmatis carveol
dehydrogenase in the oxidation of carveol. Therefore, the phys-
iological function of premycofactocin and, by extension, myco-
factocin, resembles that of PQQ as peptide-derived redox
cofactors.
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Figure 4. Schematic summary of known microbial RiPP functions in the context of interkingdom, interspecies, and intraspecies interactions.

Concluding remarks and future directions

Microbial RiPPs are the most documented among known
RiPPs, with a huge number of studies on their structures, struc-
ture/activity relationships, mechanisms of action, and biosyn-
thesis, concerning in particular the posttranslational modifica-
tions and their dedicated enzymes. Although RiPPs’ antibiotic
properties and biosynthesis pathways are currently well-stud-
ied with the purpose of identifying alternative strategies to the
use of conventional antibiotics in the context of the microbial
resistance crisis and the One Health context approved by the
World Health Organization, RiPPs’ ecological roles remain
poorly documented. For instance, cyanobactins (including the
well-known patellamides), which are ribosomal peptide macro-
cycles produced by several cyanobacteria species associated
with marine organisms (sponges and ascidians) showing
important biomedical activities, have been intensively studied
with regard to their biosynthesis mechanisms and their biolog-
ical properties (226 —228), but their ecological functions have
not been approached.

This review provides for the first time an overview of the
various roles that are currently known for microbial RiPPs in
nature (Fig. 4), particularly in the context of microbial commu-
nities and from the perspective of multicellular development.
At the present time, competition is the ecological function that
has been most clearly demonstrated for some microbial RiPPs,
but it appears that the domain is still in its infancy, and the field
is very likely to witness more and more active developments in
the next few years. This will be made possible in the holog-
enome (i.e. the collective genomic content of all individuals
within a holobiont) concept of evolution (4, 5), thanks to an
increasing number of studies deciphering the roles played and
the interactions of various microbiota that are progressively
evidenced to be associated with all organisms and form holo-
bionts (marine organisms, insects, birds, plants, mammals . . .).
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Certainly, current technological advances, including genome
mining tools and gene manipulation methods, MS imaging,
analytical and spectrometric, and single-cell imaging tech-
niques, will also favor the discovery of novel roles played by
RiPPs in microbial ecology and in a large diversity of both
organisms and ecosystems. This allows us to presume that eco-
logical roles will be evidenced more and more rapidly and will
concern an increasing number of RiPPs and microbiota. As of
now, we can speculate that ecosystems where presently RiPPs
have not been evidenced as actors in bacterial competitions or
other ecological functions, whereas unmodified antimicrobial
peptides and bacteriocins or NRPS-derived NPs are, will appear
as prolific niches to study. They can be exemplified by the
rumen microbiota (229, 230) or the microbiota of honeybees
(231) or lepidopterans (232), where the secreted RiPP antibac-
terial compounds remain to be identified and to be evidenced in
competition. Indeed, the production of antimicrobial metabo-
lites by social bee gut symbionts has been shown to contribute
to augmenting their resistance to pathogens, in addition to
stimulating host-immune responses or competing for space
and nutrients, thus participating in reduction of pathogen-re-
lated bee declines (233), but their identification still remains to
be achieved.

Hence, the future of RiPPs as actors in ecosystems will pre-
sumably pass not only through a fast development of the incip-
ient directions described in this review, but also a deep explo-
ration of the arrays of tight connections established between
them that will open new tracks for discovering novel functions
ensured by these NPs. In this sense, deciphering more deeply
the fine-tuning regulations managing RiPP production, their
effects at low doses, their pheromone function, and their roles
in QS and biofilm formation as well as in interbacterial preda-
tion is expected to expand our knowledge of their native func-
tion. Furthermore, as mentioned above, elucidating the tight
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relationships between the aforementioned functions and DNA
acquisition by naturally competent bacteria (234, 235) will
afford rich perspectives. Indeed, natural transformation is a
driving force for adaptation and evolution through horizontal
gene transfer (236), and involvement of bacteriocins in the pro-
cess has already been suggested (171, 237), prefiguring a puta-
tive role that could be played by RiPPs in these processes. Over-
all, it is a much greater challenge to decipher the native roles of
microbial RiPPs, and multidisciplinary collaboration from
chemists, microbiologists, and microbial ecologists is definitely
required.

Implementing such directions, in addition to the already
developed studies on RiPP biosynthetic machineries and on
their structures or mechanisms of action, will increase the panel
of novel molecules and strategies to fight against bacterial resis-
tance to antimicrobials while preserving commensal bacteria in
microbiota, thus affording new opportunities for agricultural or
farming practices as well as human, animal, and environmental
health in the One Health context for the benefit of society.
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